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* CIFARTO00: 60,000 images, 32x32 pixels, 100 classes. = At 2-6 bits, all students initially drop in accuracy more sharply than the teacher.
Bit Width vs. Accuracy (CIFAR-100) " Distillation aids complex datasets but reduces compressibility for further quantization.
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Figure 1. Flowchart for Experiment Design https://arxiv.org/abs/2203.08679
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